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Abstract. Much work have been done in activity recognition using
wearable sensors organized in a body sensor network. The quality and
communication reliability of the sensor data much affects the system per-
formance. Recent studies show the potential of using RFID radio infor-
mation instead of sensor data for activity recognition. This approach has
the advantages of low cost and high reliability. Radio-based recognition
method is also amiable to packet loss and has the advantages including
MAC layer simplicity and low transmission power level. In this paper, we
present a novel wearable Radio Frequency Identification (RFID) system
using passive tags which are smaller and more cost-effective to recog-
nize human activities in real-time. We exploit RFID radio patterns and
extract both spatial and temporal features to characterize various activ-
ities. We also address two issues - the false negative issue of tag readings
and tag/antenna calibration, and design a fast online recognition sys-
tem. We develop a prototype system which consists of a wearable RFID
system and a smartphone to demonstrate the working principles, and
conduct experimental studies with four subjects over two weeks. The
results show that our system achieves a high recognition accuracy of
93.6 % with a latency of 5 s.

Keywords: Activity recognition · Wearable RFID · Real-time

1 Introduction

With the rapid advances of wireless networking and sensing technologies in recent
years, recognizing human activity based on wearable sensors has drawn much
research interest. In this paradigm, wearable sensors with sensing and wire-
less communication capabilities are organized in a body sensor network (BSN)
to capture different motion patterns of a user. Continuous sensor readings are
collected and processed at a centralized server for extracting useful features,
training an appropriate activity model, and recognizing a variety of activities.
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Recognizing people’s activities continuously in real-time enables a wide range
of applications, particularly in health monitoring, assistive living, rehabilitation,
and entertainment.

While BSNs have shown the effectiveness, they do have several limitations.
First, the human body affects the quality of the wireless links between sensor
nodes causing packet loss [1]. This will result in incomplete sensor data received
at the server, undermining the accuracy and the real-time performance of the
recognition system. To improve packet delivery performance, the system can
either use re-transmission mechanisms or increase the transmission power level
[2]. However, this solution complicates the underlying MAC protocol, increases
sensor power consumption, and degrades the real-time performance of the sys-
tem. Moreover, in order to capture the user’s activities, BSN nodes are equipped
with sensing, computing, storage, and communication devices, making the sen-
sor nodes large in size and high in cost. Finally, batteries are required to keep
the sensor nodes alive, making energy consumption a challenging issue in BSN.
The daily maintenance of the system (e.g., monitoring the remaining power and
changing the batteries for multiple sensor nodes) is labor-intensive.

Recent studies show that Radio Frequency Identification (RFID) technologies
have the potential to build low-cost, reliable systems to detect certain activities
such as moving trajectories or gestures based on radio information [3–5]. Moti-
vated by these work, we explore the possibility of using ultra-high frequency
(UHF) RFID system for complex human activity recognition. Our system is
based on two observations: (1) there exists heavy attenuation of the human body
to radio communication band in which the UHF RFID operates, and (2) RFID
radio communication is highly affected by the tag-antenna distance and orien-
tation. Based on these observations, if we deploy an RFID system on a human
body, user motions may result in different radio patterns which can differentiate
activities. In our system, packet loss and fading provide useful information for
activity recognition. Thus, simple MAC protocols and low transmission power
levels are preferred. Further, we use passive tags instead of sensor nodes which
are smaller and lighter that can be embedded into the clothes and daily objects.
The passive tags are more cost-effective and, due to their simple structure and
protective encapsulation, more robust than the sensor nodes. Finally, the pas-
sive tags operate without batteries. Once deployed, no further maintenance is
required. The only device that requires battery power in our sensing system is
the RFID reader. According to our previous experience in BSN-based recogni-
tion system [6] in which careful battery management is required for every sensor
node to keep the system operate, we argue in this paper that using only one bat-
tery for the entire system significantly reduces the human-effort and increases
its reliability. Moreover, recent technical trends show that low-cost, low-power
RFID readers are becoming commonly available by integrating into the smart-
phones [7], making our work potentially beneficial to the mobile users in the
future.

The system consists of a wearable RFID system for capturing radio pat-
terns, and a smartphone device for collecting and processing such patterns. To
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make use of the radio patterns, we extract temporal and spatial features to
characterize the radio patterns. These features are carefully selected to tolerate
large variances in tag performance, avoiding labor intensive calibration which
is typically required in many RFID and RSS-based systems [3]. We design an
effective algorithm to address the false negative issue of tag readings in RFID
systems. To achieve real-time recognition, we use a fixed-length sliding window
to control latency bound, and develop a fast, lightweight, online algorithm based
on Support Vector Machine (SVM) to be executed on smartphones. We conduct
comprehensive experiments involving multiple human subjects. The results show
that our system achieves a high recognition accuracy with a low delay.

The rest of the paper is organized as follows. Section 2 introduces related work.
Hardware setup and preliminary experiment results are presented in Sect. 3. We
present the details of our system design in Sect. 4. Section 5 reports results of
empirical studies and Sect. 6 concludes the paper.

2 Related Work

Much work have been done based on sensor readings for activity recognition.
These sensing based solutions [6,8] usually deploy accelerometer sensors on a
human body to capture body movement. The sensor nodes are self-organized
into a BSN where appropriate MAC and routing protocols are operated to ensure
the quality of sensor data. Different from these work, we exploit RFID radio
information for activity recognition.

RFID has been used in indoor localization and activity recognition. For exam-
ple, fixed RFID readers and reference tags are deployed in the environment with
known locations to track the mobile tags or persons using RSS values [3,4]. In
[5], the authors use RFID for tracking hand movements in a table-size scale. The
tags are placed in a grid-like structure on a table with readers located at three
corners. They use tag counting information received at different readers to keep
track of hand movements. Different from the above work relying on fixed RFID
readers or tags for tracking locations or detecting simple moving patterns, we
design a wearable RFID system to recognize human activities involving complex
movements of different body parts continuously. In [6], wrist-worn HF RFID
readers are used to capture the object usage information by reporting the pas-
sive tags attached to objects within its reading range (less than 7 cm in reading
distance). Different from this work, we use a UHF RFID system with a larger
reading range covering a user’s entire body, and exploit the RFID radio patterns
to recognize body movements.

Recent work have explored 2.4G RF radio information for activity recogni-
tion. In [2], the authors use the radio communication patterns extracted from
a BSN to recognize activities. Their BSN consists of two on-body sensor nodes,
which send simple fake packets to the sink at a low power level. The communi-
cation patterns (i.e., such as packet delivery ratio and the mean of RSSI values)
from arrival packets within a time window are extracted and used as a signature
to recognize the corresponding activity. Similar RSSI information of the radio
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communication have also used been in [9] for activity recognition. Different from
these work, we design a novel RFID system with passive tags which can be
potentially unobtrusive to user experience since tags can be easily embedded
into clothes. Unlike the sensor nodes, the passive tags do not rely on battery
power to operate. We discover rich RFID radio patterns and extract complex
features, and demonstrate how they are used in a real-time activity recognition
system.

3 Preliminary Experimental Studies

In this section, we introduce our system hardware setup and conduct preliminary
experiments to show the tag reading performance under different conditions and
the potential of using radio patterns for activity recognition.

3.1 Hardware Setup

The hardware used in this work is shown in Fig. 1. We use Impinj R2000 RFID
reader module powered by a Li battery with 9000 mAh capacity. The size of the
reader is 15×9×2.5 cm. We use UHF RFID tags with a credit card size. We have
four antennas, and each has a size of 7.8× 7.8× 0.5 cm. The transmission power
level of each antenna is adjustable from 0 dbm to 30 dbm with a minimum level
of 0.1 dbm. The RFID reader module operates at 840–960 MHz and supports
UHF RFID standards such as ETSI EN 302 208-1. The agility of the module
is −95 dbm. When set to the tag inventory mode, the reader can read as many
tags as possible (maybe multiple readings per tag) using an anti-collision proto-
col. For the reader we used, over 50 tag readings can be obtained in one second.
Each tag reading contains the tag ID1 and the RSS value. Tag readings obtained
from the reader are sent wirelessly through a Serial-to-WiFi adapter. The read-
ings are then received by a smartphone for processing. We use Samsung Nexus
3 smartphone with a dual-core 2.4G processor, running Android 4.0.

Serial-to WiFi Adapter RFID Reader Antenna

Smartphone

RFID Tag

Fig. 1. Hardware setup.
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Antenna Antenna Antenna

(a) Power = 20 dbm, Angle = 0°  (b) Power = 30 dbm, Angle = 0° (c) Power = 20 dbm, Angle = 90° 

Fig. 2. Average RSS values of tags at different positions with different transmission
power levels and tag-antenna orientations.

3.2 Reading RFID Tags

We first study the tag reading performance of the reader under different settings
in transmission power level, tag-antenna distance, and orientation.

First, Fig. 2(a) shows the RSS values obtained at different positions in the
detection area of an antenna. The antenna is placed on the top of the area facing
downward with the transmission power level set to 20 dbm. The tag under test
is placed in an area 0 cm to 240 cm perpendicular to, and −120 cm to 120 cm
parallel to the antenna face (negative values for positions on the right side of
the antenna). The tag-antenna angle is 0 degree, i.e., the tag face is parallel to
the antenna face. As shown in Fig. 2(a), the RSS gets stronger when the tag
is placed closer to the antenna. Specifically, in the direction perpendicular to
the antenna face, the tag can be stably read when placed within the distance
of 60 cm to 90 cm. For a distance less than 60 cm or larger than 90 cm, the tag
is not detected in some locations. In the direction parallel to the antenna face,
the tag can be stably read when placed in the distance of −60 cm to 60 cm. For
locations out of this range, the tag is not detected sometimes.

Next, we change the antenna’s transmission power level to 30 dbm and repeat
the previous experiment. The results are shown in Fig. 2(b). It is clear that all the
RSS values get increased as compared to the 20 dbm results in Fig. 2(a), and the
antenna’s reading range covers the entire 240 cm × 240 cm area with no miss
detection. Finally, we repeat the first experiment with a power level of 20 dbm,
but we turn the tag-antenna orientation from 0 degree to 90 degrees. The results
are shown in Fig. 2(c). We observe that the antenna’s reading area has changed
significantly. Tags can be read farther in the positions parallel to the antenna’s
face but significantly closer (no more than 60 cm) in the direction perpendicular
to the antenna’s face compared to Fig. 2(a).

In summary, the tag RSS values are affected by factors including tag-antenna
distance, orientation, and transmission power. Moreover, human body is known
to affect RFID communication [4], which is also observed in our experiments
(detailed experiment results are omitted due to page limits). If the tags and
antennas are worn on the user’s body, the above factors will change by the move-
1 We use the Electronic Product Code (EPC) stored on a tag as its ID.
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RFID 
Reader

Antenna 
Left Foot

Antenna 
Right 
Foot

Antenna 
Chest

Tags

Antenna 
Back*

* Antenna Back is at the same place of Antenna Chest on the user’s back
(a) (b)

Fig. 3. (a) Wearable RFID system, (b) average RSS readings with different motions
over time.

ments of different body parts when performing activities, and can be potentially
used for activity recognition.

3.3 Potential of Activity Recognition

In this section, we demonstrate the potential of using RFID radio patterns
extracted from RSS values for activity recognition. The experiment is carried
out by one male subject performing three basic motions including standing, sit-
ting, and walking. Four antennas and 36 tags are attached to the user as shown
in Fig. 3(a) and introduced later in Sect. 4.1. During this experiment, we use
the all antenna inventory mode of the reader which automatically activates the
antennas for tag reading. Under this mode, the readings from the four antennas
are mixed together. Also the four tags attached around the same body part share
the same tag ID.

The average RSS values of tags attached to different body parts are shown in
Fig. 3(b). From this figure, it is clear that different motions result in different RSS
patterns. For the sitting activity, the RSS values of tags attached to the body,
right leg, and left/right ankles are clearly stronger and more stable than other
activities. For the standing activity, the RSS readings of the above mentioned
body parts are also relatively more stable than the walking activity but the
RSS values are lower than the sitting activity. Additionally, it can be seen from
Fig. 3(b) that the RSS values of tags attached to the left wrist and left arm are
stronger and more stable than other activities. For the walking activity, rhythmic
variances in RSS values can be observed for tags attached to nearly every part
of the human body, and they seem matched with arms and legs waving during
the walking activity.

4 System Design

The above preliminary studies have shown the feasibility and potential of using
RFID radio patterns for activity recognition. In this section, we present the
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detailed design of the proposed RFID-based real-time activity recognition sys-
tem including sensing, data segmentation, feature extraction and recognition
algorithm.

4.1 Antenna/Tag Placement

We present the antenna and tag placement strategies in this section and show a
subject wearing the antennas and tags in Fig. 3(a).

Antenna Placement. As suggested by Fig. 2 in our preliminary studies, we
place four antennas on a human body – two antennas (one on the chest and the
other on the back) for detecting hand/arm movements, and one antenna on each
of the feet for detecting lower body movements (as shown in Fig. 3(a)). Such
placement ensures a total coverage of different body parts, and also meet user’s
comfort need.

Tag Placement. To capture the movement of different body parts, RFID tags
are attached to nine body parts including both wrists, arms, ankles, legs, and
the body. To increase the reliability of tag readings, we attach four tags at each
body part. For example, for the right wrist, we attach four tag located at the
front, left, right, and back of the wrist. This redundant tag placement strategy
ensures that no matter how the user moves his/her wrist, at least one tag will
face the antenna and can be read by the reader with high probability. A total
number of 36 tags are attached on the user’s body with each tag having an
unique ID.

Inventory Mode. Instead of using the all antenna inventory mode used for our
preliminary experiment, we use single antenna inventory mode to discriminate
the readings of one antenna from others. The four antennas connected to the
RFID reader are activated sequentially to detect tags within their reading ranges.
The dwell time of each antenna is set to the default value of 2 s and the time
to complete an inventory cycle is 8 s. The tag readings obtained during the
activation time of an antenna is a series of tag IDs and their RSS values.

The transmission power level of the RFID reader is a key parameter in our
system, and it influences the system’s performance on both recognition accu-
racy and battery consumption. We find the optimal transmission power level by
experiments in Sect. 5.3. We also evaluate the effect of different antenna and tag
placement strategies in Sect. 5.2.

4.2 Data Segmentation and Completion

Given the continuous flow of tag readings, we first apply a sliding window to
segment the data. In this paper, we focus on real-time activity recognition with
a restricted recognition latency defined by the application. We use a fixed window
size specified by L combined with the real-time activity recognition algorithm
introduced later to achieve stable time performance. L is a key parameter in our
system for it affects both the recognition accuracy and latency.
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Time

Ant 0:
Ant 1:
Ant 2:
Ant 3:

Current WindowLast Window Current Data Completed Data

Combine 
Data

Fig. 4. Data completion method.

As mentioned in the introduction, one of the challenges in existing RFID
systems is false negative readings [4,5], caused by miss detection – a tag is in
the antenna’s reading range, but not detected. In addition, in our system if the
sliding window size is too short for the reader to complete readings for all four
antennas, it may also cause false negative readings. To address this issue, we use
recent historical data to complete the current readings. The intuition behind this
approach is temporal locality – tags recently detected are likely to be detected
again with similar RSS values. We illustrate the method in Fig. 4, assuming the
false negative reading is caused by a short window size of 4s. While the data from
antenna 0 and 1 are missing in the current data because the current window is
only long enough to complete two antennas’ readings, we use the last window’s
data to complete the current data. The same strategy is applied to the case of
miss detection, technical details are omitted in this paper due to page limits.

4.3 Temporal and Spatial Features

For each data segment, we extract both temporal and spatial features to charac-
terize the radio patterns. An known performance issue of tag readings commonly
exists in RFID-based systems is that readings from different combinations of tags
and antennas may be different even with the same condition [4]. One possible
solution is through calibration. However, data calibration [4] is infeasible in our
system because the complexity of our feature set. As a result, we carefully design
our feature set that can tolerate the tag performance issue.

Temporal Features. The data in each segment are composed of series of RSS
values arranged by receiving time with each series representing the RSS values
of a specific tag read by a specific antenna. Seven features are extracted from
each RSS series including the mean, variance, max, min, mean crossing rate,
frequency domain energy and entropy of the RSS values to characterize its radio
patterns temporally. The temporal features are extracted for each RSS series
independently from the others. As a result, data calibration is not required for
there is no cross-reference between readings from different tags and antennas.

Spatial Features. To characterize the radio patterns spatially, we extract the
correlation coefficients of RSS series for different tags read by different antennas.
The correlation coefficient quantifies the degree of dependency between a pair
of RSS reading series by observing the similarity in their changing patterns. As
shown by our preliminary experiment results, the RSS values are stronger with
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a closer tag-antenna distance and a smaller tag-antenna angle when the trans-
mission power level is fixed. The performance issue of tag readings may cause
different RSS values obtained by different combinations of tags and antennas
even with the same condition but cannot fundamentally change their changing
patterns caused by body movements.

4.4 Real-Time Recognition Algorithm

The design goal of our system is to achieve real-time activity recognition. We
identify two key requirements described as follows.

1. Online. An recognition algorithm is offline if it requires the complete instance
of an activity to be presented for recognition [6]. Offline systems cannot per-
form real-time recognition for they need to wait for the current activity to
finish before recognition and the waiting time is uncertain. To achieve real-
time recognition, the algorithm must be online that can recognize the current
activity without being presented with the complete activity instance, i.e., only
using data already obtained.

2. Continuous. To achieve real-time, the recognition result must be generated
before the delay bound. Considering that the recognition system works iter-
atively to generate recognition results, we adapt the real-time concept from
the signal processing field [10] to activity recognition systems. The acceptable
recognition latency is specified by the sliding window size L which determines
the data collection time. The processing time must be less than the data col-
lection time [10] so that the recognition results can be obtained before the
next data segment arrives, providing continuous recognition results without
extra delays.

While the online property of our recognition system is guaranteed in our
system for activity instances are generated only using the data already obtained,
the continuous property is determined by the execution time of the recognition
algorithm. We design a fast recognition algorithm based on a multi-class support
vector machine (SVM) with radial basis function kernel. SVM is widely used in
activity recognition [2]. The advantage of using SVM for activity recognition
includes: (1) designed on a sound theoretical basis, SVM is promising to have
accurate and robust classification results; (2) SVM scales well to the number of
features; (3) the model training can be performed on very few training cases; and
(4) the recognition can be executed fast at runtime [2]. The performance of our
recognition algorithm is determined not only by its time complexity but also the
hardware platform. We have implemented the recognition algorithm on Android
smartphone, and will evaluate its real-time performance in the next section.

5 Empirical Studies

In this section, we present empirical studies to evaluate the performance of our
system. The experiments are conducted in an area of our office building, includ-
ing two rooms and a corridor, as well as outdoors. Our data collection involves
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Table 1. Four subjects involved.

Subject Gender Height Weight Body

(cm) (kg) Type

1 Male 177 70 Normal

2 Female 159 45 Slim

3 Male 180 75 Normal

4 Male 193 110 Strong

Table 2. Eight activities studied.

No. Activity No. Activity

1 Sitting 5 Cleaning Table

2 Standing 6 Vacuuming

3 Walking 7 Riding Bike

4 Cleaning 8 Going Up/Down
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Fig. 5. Sliding window size vs. recog-
nition accuracy.
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recall.

four subjects (three males and one female). The subjects are carefully selected
to represent different heights and body types as summarized in Table 1. Each
subject is required to perform eight activities as summarized in Table 2. Each
activity is performed for at least five minutes. The data collection is carried out
over a period of two weeks and a total number of over 200 activity instances are
collected.

5.1 Recognition Accuracy and Real-Time Performance

In the first experiment, we evaluate the recognition accuracy which is defined
by the number of correctly classified instances over the number of the total
instances, and the latency which is determined by the sliding window size.

The recognition accuracies with different sliding window sizes are illustrated
in Fig. 5. As we can see from the figure, when the sliding window size is small
(i.e. from 1s to 4s), the recognition accuracy rapidly grows from 65.8 % to 91.8 %.
The recognition accuracy reaches its peak at 93.6 % when sliding window size is
5s. It is interesting to see that the recognition accuracy drops slowly afterwards
and stabilizes at around 86 % when the sliding window size increases further.
This result suggests that a larger sliding window does not always result in a
higher recognition accuracy. We breakdown the precision and recall of different
activities with a window size of 5s and show the results in Fig. 6. Figure 6 shows
that the precision and recall for most of the activities are above 0.9. By ana-
lyzing the results, we find that some of the walking activity are recognized as
going up/down stairs, a few instances of the walking, cleaning table, and cleaning
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Table 3. Antenna placement configura-
tions.

Configuration Back Chest Left Right

Foot Foot

Upper Antennas � �
Lower Antennas � �
Mixed Antennas � �

Table 4. Tag placement configurations.

Configuration Left Right Left Right Body Left Right Left Right

Wrist Wrist Arm Arm Leg Leg Ankle Ankle

Upper Tags � � � � �
Lower Tags � � � � �
Mixed Tags � � � � �

window activities are recognized as vacuuming. Overall, our system achieves the
best recognition accuracy of 93.6 % when the sliding window size is set to 5s.

Next, we evaluate the real-time performance of the system. The online prop-
erty is guaranteed by using only the current and historical data for recognition.
The continuous property is determined by the execution time of the recogni-
tion algorithm. Figure 7 compares the data collection time and the maximum
processing time on our smartphone (data completion + feature extraction +
recognition) under different sliding window sizes. As shown in the figure, our
system performs real-time recognition even when the delay bound is down to
1s (by fixing the sliding window size to 1s). The maximum processing time is
always less than the data collection time and remains low (around 450 ms) when
the sliding window size grows.

5.2 Antenna and Tag Placement

We evaluate the performance of different antenna and tag placement strategies
in this experiment. We designed three placement configurations for both the
antennas and the tags as shown in Tables 3 and 4, respectively. Note that we
assume the user wears all the tags when choosing different antenna configurations
and wears all the antennas when choosing different tag configurations.

The recognition accuracies under different antenna configurations are illus-
trated in Fig. 8. To compute the accuracy of each activity, we use the same metric
as in [2] defined as follows.
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activity accuracy =
TruePositive+ TrueNegative

TruePositive+ TrueNegative+ FalsePositive+ FalseNegative

The metric for the overall accuracy is the same as we used in our first experi-
ment. Figure 8 shows that the lower antennas are effective to activities involv-
ing more lower body movements (e.g., sitting, standing, and walking), and the
upper antennas are more effective to activities (e.g., cleaning window, cleaning
table, and vacuuming) with more upper body movements. The Mixed Antennas
configuration achieves the highest overall accuracy of 85.1 %. For different tag
configurations, the results are illustrated in Fig. 9. We have similar observations
as in the antenna configuration experiment. The Lower Tag and the Mixed Tag
configurations achieve similar overall accuracy of 88.8 % and 87.8 %, respectively.

In summary, the antennas and tags attached to the lower and upper body
are effective in recognizing activities involving different lower and upper body
movements, respectively. A good choice is to use the mixed configuration that
places the tags and antennas on one side of the upper body and the other side
of the lower body.

5.3 Antenna Transmission Power Level and Battery Consumption

In this experiment, we evaluate the system’s performance with different antenna
transmission power levels (i.e., 20 dbm, 25 dbm, and 30 dbm). Figure 10 illus-
trates the overall recognition accuracies of different power levels. The recognition
accuracy is above 90 % for all transmission power levels and the highest accu-
racy of 94.0 % is achieved at power level of 25 dbm. We further study the optimal
power levels for different subjects. As shown in Table 5, we discover that for all
three male subjects, the optimal recognition accuracy is achieved at the power
level of 25 dbm, followed by 30 dbm and 20 dbm. This result explains the reason
for the overall optimal power level of 25 dbm shown in Fig. 10. For the female
subject, the optimal power level is 20 dbm. It is possibility because the female
subject is smaller in size and the fading effect is stronger with a lower trans-
mission power level. This result suggests that the optimal power level is not the
highest level but the one most sensitive to RSS radio patterns resulted from
different activities.

To evaluate battery consumption, for the RFID reader, we measure the out-
put current for the battery. The battery output current is 180 mA, 223 mA, and
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253 mA, for the transmission power level of 20 dbm, 25 dbm, and 30 dbm, respec-
tively. For the smartphone, we use a battery monitoring software built on top
of the Android OS’s battery consumption APIs to record the battery consump-
tion data. The results show our recognition software introduces an additional
consumption of about 38 mA. Though the reader consumes a larger amount of
battery power compared to BSN-based systems [2,6], according to our previous
experience in data collection using a BSN [6], we find that managing only one
battery for the reader is much easier than managing batteries for multiple nodes
in a BSN.

6 Conclusion

In this paper, we present a novel wearable RFID systems for real-time activity
recognition. We implemented the prototype system, and the experiment results
show our system achieves high accuracy and low delay. As our first prototype,
there are some limitations. For example: (1) the current devices are a little
cumbersome; (2) a large number of tags and antennas are used. In our future
work, we plan to improve our system design by: (1) using smaller RFID readers,
or smartphone integrated RFID readers; (2) studying more antenna and tag
placement strategies and exploring the minimum number of tags and antennas
necessary to achieve better system performance.
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