
Debugging and Rapid Prototyping of NFC

Secure Element Applications

Michael Roland

NFC Research Lab Hagenberg
University of Applied Sciences Upper Austria

michael.roland@fh-hagenberg.at

Abstract. The ecosystem behind secure elements is complex and pre-
vents average developers from creating secure element applications. In
this paper we introduce concepts to overcome these issues. We develop
two scenarios for open platforms emulating a secure element for the An-
droid platform. Such an open emulator can be used for debugging and
rapid prototyping of secure element applications. Moreover, by trading
the secure element’s security and trust for openness, such a platform can
be used as a replacement for the secure element for long-term testing
and for showcasing of applications.

Keywords: Near Field Communication, Secure Element, Java Card,
Rapid prototyping, Debugging, Testing.

1 Introduction

Since Google added support for Near Field Communication (NFC) technology
to their Android operating system and to their Nexus devices in 2010, the num-
ber of smart phones equipped with NFC functionality is rapidly increasing. This
growing availability also boosts many developers’ interest in developing NFC
applications. Particularly card emulation is an often demanded feature. Card
emulation is the ability of an NFC device to interact with existing contact-
less smartcard reader infrastructures. Therefore, an NFC-enabled smart phone
in card emulation mode could replace smartcards in payment, access control,
identification and ticketing applications. Especially payment use-cases and their
potential for generating high revenues boost the developers’ demand for NFC
card emulation [8].

The central component of card emulation is the secure element. The secure
element is a smartcard microchip that is embedded (fixed or removable) into
the NFC device. This chip is a tamper proof hardware platform that provides
highly secure storage and a trusted execution environment. Modern secure ele-
ments (just like many other modern smartcards) contain a Java Card run-time
environment. Thus, developers can create applications independent of the ac-
tual secure element hardware using Java Card’s subset of the Java programming
language.

G. Memmi and U. Blanke (Eds.): MobiCASE 2013, LNICST 130, pp. 298–313, 2014.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2014

Debugging and Rapid Prototyping of NFC Secure Element Applications 299

While the secure element’s high levels of security and trust are important re-
quirements for many application scenarios, they also form an enormous obstacle
for many developers [8]: The secure element ecosystem is complex and has sev-
eral different players. Secure elements are usually controlled by their issuer (e.g.
the handset manufacturer for an embedded secure element in a mobile phone
or the mobile network operator for a UICC-based secure element). Issuers of-
ten delegate the management of their secure elements and the applications on
them to a trusted service manager (TSM). The trusted service managers act
as connectors between providers of secure element applications and the secure
elements of a large number of users.

Besides acting as a connector, a TSM will typically also act as a filter: To
maintain the security and the trusted state of the secure element, a TSM has to
assure the quality and the security of applications deployed to the secure element.
Thus, secure element applications will most likely have to undergo some form of
(costly) security certification. Moreover, the available space on a secure element
is very limited. Therefore, the TSM has to choose which applications to deploy
to a particular secure element. This may result in a high cost for application
developers and service providers to deploy their applications to secure elements.
It may even cause applications that compete with services provided by a secure
element’s owner or by large service providers to be blocked completely from some
secure elements (cf. [1, 2]). Currently, many secure element issuers do not even
provide development access to their secure elements for average developers.

Therefore, the barriers towards getting an application into a secure element
(even for development purposes) are very high. Nevertheless, developers seek
simple ways to develop and test their applications (Java Card applets) for secure
elements. An ideal debugging and prototyping environment would permit the
applets to be tested in-place with other application components while allowing
source-level debugging of the applets’ code.

In the context of the secure element in an NFC-enabled smart phone, in-place
debugging would mean that the secure element (Java Card) would be emulated in
software. This emulator would then be accessible to apps through regular secure
element APIs, as well as to external smartcard readers, through the contactless
NFC interface. Besides source-level debugging, such a scenario would also provide
an environment for rapid prototyping of secure element applications without
access to an actual secure element. I.e. the emulator could be used as a drop-
in replacement for a secure element that provides the same functionality while
trading security for openness. Thus, on the one hand, this environment would
not provide the high level of security of a smartcard chip, but, on the other hand,
would be open to all developers.

In this paper, we describe the conceptual design of such an open secure ele-
ment development environment for Android devices. We show how such a secure
element emulator could be integrated in both, an actual Android smart phone
and an Android device emulator.

300 M. Roland

2 Java Card

Java Card technology is a subset of the Java programming language combined
with a run-time environment that is optimized for tiny embedded devices like
smartcards [12]. The run-time environment consists of a Java Card virtual ma-
chine (as defined in [13]), a Java Card specific API and Java Card specific security
features. In this paper, we refer to Java Card version 2.2.2. While this version is
used in many current secure elements, it is not the most recent Java Card ver-
sion. Our decision is based on the fact that – while Java Card version 3.0 is fully
specified since 2009 – it is still unclear when commercial products (particularly
secure elements) based on that new and enhanced version of Java Card will hit
the mass market.

2.1 Language and API

Java Card has been optimized for tiny embedded devices with limited memory
and processing power. Therefore, many features of Java are unavailable in Java
Card to assure that applications have a small footprint that matches the con-
strained resources of a smartcard. For instance, Java Card only supports the
primitive data types boolean, byte, short and optionally int. The types char,
float, double, long and the wrapper classes for primitive data types are not sup-
ported. Moreover, some language constructs like enumerated types, enhanced
for -loops for array iteration or variable-length argument lists do not exist in the
Java Card language. As a result of the constrained smartcard environment and
the command-response interaction with smartcards, Java Card does not offer
multi-threading capabilities. Furthermore, most of the core API classes of the
Java language are unsupported. Specifically, only classes related to exceptions
and the class Object, as a common root for the class hierarchy, are available.

Besides these limitations, the Java Card run-time environment provides an
API with smartcard-specific classes. This API comprises of classes related to the
interaction with the Java Card run-time environment, the structure and opera-
tion of Java Card applications and the processing of ISO/IEC 7816-4 smartcard
commands (application protocol data units, APDUs). Moreover, the API con-
tains classes related to smartcard-specific security functionality (e.g. manage-
ment of PIN codes and cryptographic keys, encryption, decryption, and com-
putation of checksums, cryptographic hashes and digital signatures based on
various algorithms). Additionally, the Java Card API contains further (partly
optional) helper classes for smartcard-related tasks.

2.2 Virtual Machine

The JavaCard virtualmachine is the execution environment for the JavaCard run-
time environment and for all Java Card applications. In comparison to other Java
virtual machines, the Java Card virtual machine runs throughout a smartcard’s
lifetime. The virtual machine and all applications persist across power-cycles.
This is possible because the code and data memory is backed by persistent storage

Debugging and Rapid Prototyping of NFC Secure Element Applications 301

technologies. Protection against data corruption due to unexpected power-cycles
is achieved with an atomic transaction mechanism.

2.3 Security

Besides the different life-cycle, another major difference between Java and Java
Card is the security architecture. Java Card has been designed for security critical
applications. Particularly, Java Card introduces a strict separation between the
contexts of installed applications. Thus, applications cannot access each other’s
objects (data) without being granted explicit permissions. It has to be noted,
though, that the strict firewall between application contexts seems to be weak-
ened by the lack of an on-card byte code verifier on many platforms (cf. [3, 6])
and, therefore, often relies on a trusted installation process including security
evaluation of applications prior to their deployment. This issue also complicates
developers’ and service providers’ access to the secure element.

2.4 Applications and Life-Cycle

The main entry point of a Java Card application is an applet (i.e. an instance of
a class that extends the Applet class). An applet implements the central interface
to the Java Card run-time environment that is used to control the application’s
life-cycle. The applet’s install method is invoked to create and initialize an ap-
plet instance. After installation, applet instances remain in a suspended state
until they are explicitly selected through a smartcard command. During selec-
tion, the applet instance’s select method is invoked to prepare the applet for
further processing. Once an applet is selected, all further smartcard commands
are forwarded to that applet instance by triggering its process method. Upon se-
lection of another applet instance, the current applet instance’s deselect method
is invoked and the applet instance returns into suspended state. Similar to the
virtual machine, Java Card applets execute forever (or until they are explic-
itly uninstalled). However, applet instances return to the suspended state upon
power loss or reset.

3 Java Card Simulators

Several Java Card simulators exist which allow simulation and testing of Java
Card applets without real smartcard hardware. These simulators and simulation
environments can be divided into three different categories:

1. reference implementations of the Java Card virtual machine and the Java
Card run-time environment,

2. smartcard simulators provided by manufacturers for their smartcard prod-
ucts, and

3. general-purpose Java Card simulators that operate on top of Java virtual
machines.

302 M. Roland

Sun’s (now Oracle’s) Java Card reference implementation is an example for the
first category. Regarding debugging and simulation capabilities, this type of sim-
ulation environment is comparable to a regular smartcard. It processes com-
piled Java Card applications and interacts through smartcard commands. For
instance, the Java Card reference implementation integrates with Java ME’s se-
cure element API. However, it does not offer source-level debugging capabilities
of Java Card applications.

An example for the second category are G&D’s Java Card Simulation Suite
and Gemalto’s Simulation Suite. These smartcard manufacturers provide their
custom Java Card simulation environments that simulate their specific smart-
card architectures and can be used to debug Java Card application prior to
deployment to real cards.

The Java Card Workstation Development Environment (JCWDE) and the
open-source jCardSim are examples for the third category. These simulators
emulate the Java Card run-time environment on top of a standard Java virtual
machine. Thus, instead of compiling Java Card applications to Java Card byte
code, they are compiled to Java byte code. Both simulators offer source-level
debugging for applets based on standard Java debugging tools. However, both
implementations lack some features of a full Java Card run-time environment.
While the JCWDE provides integration with Java ME’s secure element API and
direct interaction through APDU scripts, jCardSim offers support for APDU
scripts and an interface to the Java Smart Card IO API.

4 Towards a Secure Element Emulator

The available simulators provide a good starting point for developing Java Card
applications. However, especially with current NFC-enabled smart phones, de-
velopers would be interested in more advanced debugging mechanisms. An ideal
debugging environment would offer the following capabilities:

1. a complete (or as much complete as possible) Java Card run-time environ-
ment,

2. source-level debugging capabilities, and
3. in-place testing and debugging together with other application components.

In the context of the secure element in an NFC-enabled smart phone, for in-
stance, in-place debugging would mean that the secure element emulator (Java
Card emulator) is accessible to apps through regular secure element APIs, as
well as to external smartcard readers through a contactless NFC interface.

In such a scenario, Java Card applications can be tested and debugged while
they are communicating with apps on the smart phone or while they are commu-
nicating with external smartcard reader devices over the contactless interface.
Source-level debugging capabilities can come handy at this stage to trace the ex-
ecution path through the Java Card application during actual communication.
Emulating the Java Card run-time environment on top of a regular Java virtual

Debugging and Rapid Prototyping of NFC Secure Element Applications 303

machine permits using standard Java debugging tools. In comparison, creating a
custom Java Card virtual machine would also require to create custom debugging
tools that interact with that VM.

Besides source-level debugging capabilities, such a scenario would also provide
another advantage: A Java Card emulator that can be used as a drop-in replace-
ment for a secure element in a smart phone would provide an environment for
rapid prototyping of secure element applications without access to an actual se-
cure element. Thus, developers and service providers would have an open tool to
showcase their secure element applications bypassing the need for a real secure
element. While the emulator would operate at a much lower security level (no
dedicated smartcard hardware, no protections by a Java Card virtual machine,
etc.), it would be an open platform that provides comparable functionality to
a regular secure element and that is available to all developers without the re-
strictions of the complicated and closed ecosystem of a regular secure element
chip.

5 Implementing a Secure Element Emulator for Android

We chose Android as the target platform for the secure element emulator. The
main reasons for this decision are:

1. Android is an open-source system. This provides a detailed insight into sys-
tem’s internal structures and even makes modification on the system level
fairly simple.

2. Android uses a Java-based run-time environment. This is a good starting
point for Java Card emulation.

3. An Android implementation of the Open Mobile API, a standardized secure
element API, exists. Though this API has not been integrated in main-line
Android, manufacturers already integrated it in many NFC-enabled Android
devices.

4. Android has a large market share and, consequently, many requests for card
emulation capabilities and secure element access focus on the Android plat-
form.

Our vision is that the secure element emulator would integrate into an An-
droid device the same way as any other secure element. Therefore, Java Card
applets running in the emulator should be accessible by apps on the mobile de-
vice through the secure element API as well as by external smartcard readers
through card emulation. As a result, the emulator would become an open drop-in
replacement for a secure element for testing, debugging, prototyping and show-
casing purposes. The openness would, however, come at the price of less (or no)
security.

We developed two scenarios for integrating such an open environment into
Android:

1. integration of the secure element emulator with the Android emulator and
2. integration of the secure element emulator with an actual Android device.

304 M. Roland

Fig. 1. Java Card emulator attached to the Android platform emulator

5.1 Integration into the Android Emulator

Fig. 1 shows our scenario for integrating the secure element (Java Card) emulator
with the Android emulator. We chose a split approach, where the secure element
emulator runs separately from the Android emulator. The Java Card emulator
and the Java Card run-time environment operate on top of a standard Java SE
virtual machine. Therefore, standard Java debugging tools can be used to debug
Java Card applets that run inside this environment. Moreover, the separation
makes the secure element emulator independent of the Android emulator’s life-
cycle (e.g. restarts of the emulator, etc.)

Our secure element emulator has two interfaces: One is connected to the
Android emulator so that apps can access the emulated secure element and the
other is connected to a card emulation device.

In order to connect our open environment to the Android emulator, it listens
on a TCP socket for smartcard commands. On the Android side, Android’s Open
Mobile API-based secure element API (cf. [11]) is extended with a terminal in-
terface that connects to our emulator using a TCP/IP socket. This approach is
used by existing secure element simulators (e.g. Java Card reference implemen-
tation and JCWDE) too. Thus, if we use the same communication protocol over
the TCP socket, we can maintain compatibility to these simulators as well as to
the tools that use them.

The second interface connects the emulator to card emulation hardware (e.g. an
NFC reader, like the ACR122U, in software card emulation mode). Consequently,

Debugging and Rapid Prototyping of NFC Secure Element Applications 305

Fig. 2. Java Card emulator integrated into an Android device

external smartcard readers can communicate with Java Card applets running
inside the emulator.

5.2 Integration into an Android Device

Fig. 2 shows our scenario for embedding the Java Card emulator into an Android
device. In this scenario, the Java Card emulator and the Java Card run-time
environment operate on top of the Dalvik virtual machine (Android’s version of
a Java virtual machine). Therefore, Android’s Java debugging tools can be used
to debug Java Card applets that run inside this environment. Besides debugging,
this scenario can also be used to showcase applications that would normally
require a secure element. These applications could use our Java Card emulator
platform as an open prototyping environment.

Similar to the scenario with the Android emulator, our secure element emu-
lator has two interfaces: One is connected to Android’s secure element API so
that apps can access the emulated secure element. In this scenario, the Java
Card emulator is directly connected to the Open Mobile API through a terminal
interface without the need for a TCP/IP connection. The second interface is

306 M. Roland

connected to the software card emulation API (sometimes also called “soft-SE”
or “host card emulation”) that is available for some Android devices (cf. [8,14]).

5.3 Building a Java Card Run-Time Environment

When implementing a Java Card run-time environment on top of an existing Java
virtual machine, the main implementation tasks are the Java Card API and the
Java Card application life-cycle management (i.e. installation of, selection of and
communication with applets). In order to minimize the implementation effort,
we decided to base our emulator on the existing open-source Java Card run-time
environment simulator jCardSim1. jCardSim already provides an implementa-
tion of the application life-cycle management and of many parts of the Java
Card API including cryptography and data sharing between applets [4]. How-
ever, jCardSim is based only on Java Card version 2.2.1 and still lacks some core
functionality. For instance it does not yet support logical channels and atomic
transaction processing. Moreover, jCardSim was designed for short simulation
cycles and, therefore, does not consider persistence of the run-time environment
and the application state across simulation sessions.

jCardSim is currently available for Java SE so it can easily be integrated into
the first scenario. For the second scenario, it is necessary to port jCardSim to
Android. However, we consider this a minor issue as most of the functionality of
Java SE is also available on Android. Moreover, jCardSim’s implementation of
the Java Card crypto API is based on the Bouncy Castle cryptography API, an
API that is included into the Android system.

In order to connect the Java Card run-time environment to the outside world,
jCardSim provides an interface that permits registration (“installation”) of Java
Card applications and dispatching of commands to the registered Java Card ap-
plet instances. This interface could be used to attach our emulator environment
to Android’s secure element API and to the card emulation hardware.

5.4 Integration with the Open Mobile API

In order to access the secure element emulator from Android apps, it needs to be
integrated with a secure element API. Main-line Android currently has no stan-
dardized secure element API, though it contains a proprietary, undocumented
API to access the embedded secure element on some Android devices. However,
many device manufacturers added the SEEK-for-Android2 framework to their
Android distributions in order to expose a secure element API on their devices.

SEEK-for-Android is an implementation of the standardized Open Mobile
API [11]. Fig. 3 gives an overview of the architecture of this API. The API
consists of a transport API that permits APDU-based access to secure elements
as well as a service API that provides a higher abstraction level for access to
secure element applications. The Open Mobile API can be used for any type of

1 http://jcardsim.org/
2 http://code.google.com/p/seek-for-android/

http://jcardsim.org/
http://code.google.com/p/seek-for-android/

Debugging and Rapid Prototyping of NFC Secure Element Applications 307

Fig. 3. Architecture of the Open Mobile API [11]

secure element. For each secure element it needs a terminal module that acts as
an interface layer between the API and the actual secure element.

A terminal module is a Java class within the namespace org.simalliance.open-
mobileapi.service.terminals that implements an interface consisting of several
methods (cf. [10]):

1. public byte[] getAtr()

This method returns the secure element’s answer-to-reset (ATR). Our im-
plementation could return a generic ATR like ‘3B 85 01 4A 43 45 4D 55 D0’

that indicates the smartcard protocol T=1 and contains the historical bytes
“JCEMU”.

2. public String getName()

This method returns the secure element’s name (e.g. “JCEMU: JavaCard-
Emulator”)

3. public boolean isCardPresent()

This method indicates if the secure element is currently available and, there-
fore, must return true for our implementation.

4. public void internalConnect()

This method establishes a connection to our emulator and is used for any
initialization that should take place before any communication with the se-
cure element. In the Android emulator scenario, this method can be used to
establish the TCP socket to the secure element emulator.

5. public void internalDisconnect()

This method closes an open connection to our emulator and is used for
cleanup that should take place after all communication with the secure el-
ement. In the Android emulator scenario, this method can be used to close
the TCP socket to the secure element emulator.

6. public byte[] internalTransmit(byte[] command)

This method is used to pass smartcard commands (APDUs) to the terminal
module and, thus, to our emulator. The resulting responses are returned to
the calling application.

308 M. Roland

Fig. 4. Communication flow of software card emulation in a mobile phone [8]

7. public int internalOpenLogicalChannel()

This method is used to open a new logical channel to the secure element
selecting the logical channel’s default applet. The method returns the new
logical channel’s number.

8. public int internalOpenLogicalChannel(byte[] aid)

This method is used to open a new logical channel to the secure element
selecting the applet that matches the given AID. The method returns the
new logical channel’s number.

9. public void internalCloseLogicalChannel(int iChannel)

This method is used to close a given logical channel.
10. public byte[] getSelectResponse()

This method is used to receive the last response to an applet selection (that
was either performed through internalTransmit or internalOpenLogic-

alChannel).

5.5 Support for Software Card Emulation

The concept of software card emulation was first brought to mobile phones by
BlackBerry (formerly RIM) in their BlackBerry 7 platform [7]. The idea is that
the NFC controller acts as a contactless card and forwards all received smartcard
commands to an app on the application processor. In turn, responses generated
by the app are returned over the contactless interface. Fig. 4 shows the flow of
communication in a software card emulation scenario.

Therefore, our secure element emulator would first register for software card
emulation with the NFC controller chip. Then, the emulator would receive all
smartcard commands received by external smartcard readers and forward them
to the Java Card applets for processing. Finally, the response generated within
the Java Card environment would be returned through the NFC chip to the
smartcard reader.

Debugging and Rapid Prototyping of NFC Secure Element Applications 309

Using Dedicated Card Emulation Hardware. An example for a device that
could be used for card emulation is the ACS ACR 122U NFC reader. It contains
NXP’s PN532 NFC controller chip. This reader device can be connected to a
Java application through the Java Smart Card IO API using PC/SC. Commands
for the PN532 that are used to activate card emulation mode and to exchange
data during card emulation are wrapped in PC/SC APDU commands.

An explanation on how to put the PN532 NFC chip into card emulation mode
is given in [9]. First, the PN532 has to be set up for ISO/IEC 14443 Type A at
106 kbps:

PN532.WriteRegister(

CIU_TxMode,

TxCRCEn | TxSpeed = 106 kbps | TxFraming = ISO/IEC 14443A);

PN532.WriteRegister(

CIU_RxMode,

RxCRCEn | RxSpeed = 106 kbps | RxFraming = ISO/IEC 14443A);

PN532.WriteRegister(CIU_TxAuto, InitialRFOn);

Then, the PN532 has to be initialized to PICC (proximity integrated circuit
card) mode:

PN532.SetParameters(fISO14443-4_PICC | fAutomaticRATS);

PN532.TgInitAsTarget(

PICCOnly | PassiveOnly,

MifareParams = { SENS_RES = { 0x00, 0x04 } |

NFCID1t = { 0x76, 0x82, 0x4F } |

SEL_RES = 0x20 },

FelicaParams = { 0x00, ..., 0x00 },

NFCID3t = { 0x00, ..., 0x00 },

GeneralBytes = { },

HistoricalBytes = { 0x4A, 0x43, 0x45, 0x4D, 0x55 });

Finally, the card emulator listens for commands received on the contactless in-
terface, passes them to the Java Card emulator and sends the responses back
over the contactless interface:

while (emulating) {

byte[] command = PN532.TgGetData();

byte[] response = JCEmulator.process(command);

PN532.TgSetData(response);

}

Using Android. On Android, software card emulation is currently only avail-
able in version 9.1 and later of the CyanogenMod aftermarket firmware for An-
droid devices. Elenkov [5] explains how to use software card emulation in apps on
the CyanogenMod platform. The basic idea is to register for detection of either
an ISO 14443 Type A (IsoPcdA) or Type B (IsoPcdB) smartcard reader:

310 M. Roland

PendingIntent pi = activity.createPendingResult(

1, new Intent(), 0);

nfcAdapter.enableForegroundDispatch(

activity, pi,

new IntentFilter[]{

new IntentFilter(NfcAdapter.ACTION_TECH_DISCOVERED)

},

new String[][]{

new String[]{ "android.nfc.tech.IsoPcdA" }

});

As soon as a smartcard reader connects to the emulated card, the app gets
triggered and can communicate with the smartcard reader. Thus, commands
can be received from the smartcard reader and can be passed to the Java Card
emulator. In turn, responses from the Java Card emulator can be sent back to
the smartcard reader:

IsoPcdA isoPcd = IsoPcdA.get(tag);

isoPcd.connect();

byte[] response = new byte[]{ (byte)0x90, (byte)0x00 }

while (emulating) {

byte[] command = isoPcd.transceive(response);

response = JCEmulator.process(command);

}

isoPcd.close();

6 Developing a First Prototype

Fig. 5 shows the architecture of our first prototype of the secure element emu-
lator platform. Instead of separating the emulator from the apps that access it,
both, the app and the emulator environment are combined into one app. The em-
ulator platform consists of a minimal implementation of the Java Card API and
the run-time environment. We used an existing Java Card applet of a payment
application that we previously used on a Java Card smartcard. We designed our
Java Card API and run-time environment implementation so that the applet
could be run without any modifications. We added a user interface that com-
municates with the applet by invoking the emulator environment. Moreover, the
user interface allows to switch to external card emulation, where CyanogenMod’s
software card emulation mode API is used to communicate with the emulated
applet.

Our applet worked as expected, both when communicating with the app
and when communicating through software card emulation. We were able to
do source-level debugging and to single-step through the applet’s source code.

Debugging and Rapid Prototyping of NFC Secure Element Applications 311

Fig. 5. First prototype for Java Card emulation on Android

However, during implementing and testing of our prototype we found several
issues that need to be addressed in future research:

1. We were not able to implement Java Card’s atomic transaction mechanism
using the available set of APIs on the Android platform. This was not an issue
for most transactions, as these transactions would be completed even after
the emulated card was torn from the card reader’s RF field. The reason is
that while an actual smartcard stops all processing and clears its RAM upon
power-loss, the emulator platform continues and finishes applet execution.
However, we could not implement the case when a Java Card applet tries
to intentionally roll-back a transaction. Therefore, a method to roll-back an
application’s state to a defined boundary is necessary.

2. When our application process (including the emulation environment) is ter-
minated, the state of the Java Card applets is lost. Therefore, as soon as
the app starts again, the Java Card applets start from the beginning of their
life-cycle. However, for long-term testing and prototyping, the secure element
emulator needs to maintain its state beyond application process lifetime and
particularly across reboots of the Android device. Therefore, a method to
extract and restore application state has to be implemented.

7 Conclusion

In this paper, we showed two scenarios for integrating a secure element emula-
tor into the Android platform. Such a secure element emulator can be used to

312 M. Roland

test and debug secure element applets written in the Java Card language. Be-
sides source-level debugging, a secure element emulator that is integrated into
an Android device and that is accessible through the same interfaces as a regu-
lar secure element brings a significant advantage for rapid prototyping and for
showcasing of applications. Application developers can design, test and even use
their applications with the secure element emulator instead of using a real secure
element. While the emulator provides significantly less security than a real se-
cure element, it also avoids the complicated ecosystem of a real secure element.
Thus, it could significantly simplify and reduce the cost of development of secure
element applications.

Besides our conceptual scenarios, we implemented a working prototype of the
secure element emulation system. While our prototype successfully emulated
a Java Card applet, we found that there are several issues that need to be
resolved in order to build a fully working secure element emulator. These issues
particularly focus on the different life-cycle of the Java Card virtual machine
in comparison to other Java virtual machines that is introduced by the use of
persistent memory for storing application state on smartcards.

Acknowledgments. This work is part of the project “High Speed RFID”
within the EU program “Regionale Wettbewerbsfähigkeit OÖ 2007–2013 (Re-
gio 13)” funded by the European regional development fund (ERDF) and the
Province of Upper Austria (Land Oberösterreich).

Moreover, this work has been carried out in cooperation with “u’smile”, the
Josef Ressel Center for User-Friendly Secure Mobile Environments, funded by
the Christian Doppler Gesellschaft, A1 Telekom Austria AG, Drei-Banken-EDV
GmbH, LG Nexera Business Solutions AG, and NXP Semiconductors Austria
GmbH.

References

1. Balaban, D.: Telcos Close Ranks as Google Threat Looms. NFC Times Blog (July
2011),
http://www.nfctimes.com/blog/dan-balaban/

telcos-close-ranks-google-threat-looms

2. Balaban, D.: With Launch of Google Wallet, the Wallet War Begins. NFC Times
Blog (June 2011),
http://www.nfctimes.com/blog/dan-balaban/

launch-google-wallet-wallet-war-begins

3. Barbu, G., Giraud, C., Guerin, V.: Embedded Eavesdropping on Java Card. In:
Gritzalis, D., Furnell, S., Theoharidou, M. (eds.) SEC 2012. IFIP AICT, vol. 376,
pp. 37–48. Springer, Heidelberg (2012)

4. Dudarev, M.: jCardSim – Java Card is simple! Presentation at JavaOne Russia
(April 2013), http://jcardsim.org/sites/default/files/CON1160.pdf

5. Elenkov, N.: Emulating a PKI smart card with CyanogenMod 9.1. Android Explo-
rations (October 2012),
http://nelenkov.blogspot.com/2012/10/

emulating-pki-smart-card-with-cm91.html

http://www.nfctimes.com/blog/dan-balaban/telcos-close-ranks-google-threat-looms
http://www.nfctimes.com/blog/dan-balaban/telcos-close-ranks-google-threat-looms
http://www.nfctimes.com/blog/dan-balaban/launch-google-wallet-wallet-war-begins
http://www.nfctimes.com/blog/dan-balaban/launch-google-wallet-wallet-war-begins
http://jcardsim.org/sites/default/files/CON1160.pdf
http://nelenkov.blogspot.com/2012/10/emulating-pki-smart-card-with-cm91.html
http://nelenkov.blogspot.com/2012/10/emulating-pki-smart-card-with-cm91.html

Debugging and Rapid Prototyping of NFC Secure Element Applications 313

6. Mostowski, W., Poll, E.: Malicious Code on Java Card Smartcards: Attacks and
Countermeasures. In: Grimaud, G., Standaert, F.-X. (eds.) CARDIS 2008. LNCS,
vol. 5189, pp. 1–16. Springer, Heidelberg (2008)

7. RIM: Blackberry API 7.0.0: Package net.rim.device.api.io.nfc.emulation (2011),
http://www.blackberry.com/developers/docs/7.0.0api/

net/rim/device/api/io/nfc/emulation/package-summary.html

8. Roland, M.: Software Card Emulation in NFC-enabled Mobile Phones: Great Ad-
vantage or Security Nightmare? In: 4th International Workshop on Security and
Privacy in Spontaneous Interaction and Mobile Phone Use, Newcastle, UK (June
2012),
http://www.medien.ifi.lmu.de/iwssi2012/

papers/iwssi-spmu2012-roland.pdf

9. Roland, M.: Security Issues in Mobile NFC Devices. Ph.D. thesis, Johannes Kepler
University Linz, Department of Computational Perception (January 2013)

10. SEEK for Android: AddonTerminal: How to create an Addon Terminal (May 2012),
http://code.google.com/p/seek-for-android/wiki/AddonTerminal

11. SIMalliance: Open Mobile API specification (June 2012)
12. Sun Microsystems, Inc.: Java Card Platform: Runtime Environment Specification,

Version 2.2.2 (March 2006)
13. Sun Microsystems, Inc.: Java Card Platform: Virtual Machine Specification, Ver-

sion 2.2.2 (March 2006)
14. Yeager, D.: Added NFC Reader support for two new tag types: ISO PCD type

A and ISO PCD type B. Patches to the CyanogenMod aftermarket-firmware for
Android devices (January 2012),
https://github.com/CyanogenMod/android packages apps Nfc/

commit/d41edfd794d4d0fedd91d561114308f0d5f83878

http://www.blackberry.com/developers/docs/7.0.0api/net/rim/device/api/io/nfc/emulation/package-summary.html
http://www.blackberry.com/developers/docs/7.0.0api/net/rim/device/api/io/nfc/emulation/package-summary.html
http://www.medien.ifi.lmu.de/iwssi2012/papers/iwssi-spmu2012-roland.pdf
http://www.medien.ifi.lmu.de/iwssi2012/papers/iwssi-spmu2012-roland.pdf
http://code.google.com/p/seek-for-android/wiki/AddonTerminal
https://github.com/CyanogenMod/android_packages_apps_Nfc/commit/d41edfd794d4d0fedd91d561114308f0d5f83878
https://github.com/CyanogenMod/android_packages_apps_Nfc/commit/d41edfd794d4d0fedd91d561114308f0d5f83878

	Debugging and Rapid Prototyping of NFC Secure Element Applications
	1 Introduction
	2 JavaCard
	2.1 Language and API
	2.2 Virtual Machine
	2.3 Security
	2.4 Applications and Life-Cycle

	3 Java Card Simulators
	4 Towards a Secure Element Emulator
	5 Implementing a Secure Element Emulator for Android
	5.1 Integration into the Android Emulator
	5.2 Integration into an Android Device
	5.3 Building a Java Card Run-Time Environment
	5.4 Integration with the Open Mobile API
	5.5 Support for Software Card Emulation

	6 Developing a First Prototype
	7 Conclusion
	References

